31 research outputs found

    An intelligent alarm management system for large-scale telecommunication companies

    Get PDF
    This paper introduces an intelligent system that performs alarm correlation and root cause analysis. The system is designed to operate in large- scale heterogeneous networks from telecommunications operators. The pro- posed architecture includes a rules management module that is based in data mining (to generate the rules) and reinforcement learning (to improve rule se- lection) algorithms. In this work, we focus on the design and development of the rule generation part and test it using a large real-world dataset containing alarms from a Portuguese telecommunications company. The correlation engine achieved promising results, measured by a compression rate of 70% and as- sessed in real-time by experienced network administrator staff

    Mining attribute evolution rules in dynamic attributed graphs

    Get PDF
    A dynamic attributed graph is a graph that changes over time and where each vertex is described using multiple continuous attributes. Such graphs are found in numerous domains, e.g., social network analysis. Several studies have been done on discovering patterns in dynamic attributed graphs to reveal how attribute(s) change over time. However, many algorithms restrict all attribute values in a pattern to follow the same trend (e.g. increase) and the set of vertices in a pattern to be fixed, while others consider that a single vertex may influence its neighbors. As a result, these algorithms are unable to find complex patterns that show the influence of multiple vertices on many other vertices in terms of several attributes and different trends. This paper addresses this issue by proposing to discover a novel type of patterns called attribute evolution rules (AER). These rules indicate how changes of attribute values of multiple vertices may influence those of others with a high confidence. An efficient algorithm named AER-Miner is proposed to find these rules. Experiments on real data show AER-Miner is efficient and that AERs can provide interesting insights about dynamic attributed graphs

    Mining unexpected patterns using decision trees and interestingness measures: a case study of endometriosis

    Get PDF
    [[abstract]]Because clinical research is carried out in complex environments, prior domain knowledge, constraints, and expert knowledge can enhance the capabilities and performance of data mining. In this paper we propose an unexpected pattern mining model that uses decision trees to compare recovery rates of two different treatments, and to find patterns that contrast with the prior knowledge of domain users. In the proposed model we define interestingness measures to determine whether the patterns found are interesting to the domain. By applying the concept of domain-driven data mining, we repeatedly utilize decision trees and interestingness measures in a closed-loop, in-depth mining process to find unexpected and interesting patterns. We use retrospective data from transvaginal ultrasound-guided aspirations to show that the proposed model can successfully compare different treatments using a decision tree, which is a new usage of that tool. We believe that unexpected, interesting patterns may provide clinical researchers with different perspectives for future research.[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]紙本[[booktype]]電子

    Adaptive Learning of Nominal Concepts for Supervised Classification

    No full text

    Online Co-regularized Algorithms

    No full text
    Item does not contain fulltex
    corecore